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The dynamic viscoelastic properties of epoxy resins through the glass transition region are theoretically 
calculated and molecularly interpreted. Good agreement between the theoretical and experimental results is 
achieved over a broad range of temperatures and frequencies with a single set of molecular parameters. All 
molecular parameters are independent of temperature and frequency and can be determined separately. The 
master dynamic storage modulus and loss tangent are uniquely defined by a single parameter that 
characterizes the shape of the hole energy spectrum. The transition from a Williams-Landel-Ferry (WLF) 
(or Doolittle) dependence to an Arrhenius temperature dependence of the relaxation timescale (shift factor) in 
the vicinity of Tg is predicted and interpreted in molecular terms. The dynamic response of crosslinked 
polymers is quite similar to that of amorphous polymers. However, the timescale and the hole energy 
spectrum are orders of magnitude longer and broader, respectively. As a result, we have found higher 
activation energy, more frozen-in free volume and smaller effect of physical ageing on the dynamic properties 
of crosslinked systems. 
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I N T R O D U C T I O N  

Mathematical descriptions of the dynamic response of 
linear viscoelastic properties of solid polymers have been 
thoroughly developed and given in the form of integral 
equations and transformations 1-3. However, the solution 
of these equations has rarely been reported owing to 
difficulties in carrying out such calculation precisely. 
Besides, it is important to recognize that these 
mathematical descriptions do not have a simple 
interpretation in molecular terms. 

The purpose of this paper is not only to calculate the 
complete information about the dynamic viscoelastic 
properties through the glass transition region but also to 
interpret their time and temperature dependence in terms 
of a single set of molecular parameters. It is well known 
that the temperature dependence of viscoelastic 
relaxation data can be described by the Williams- 
Landel-Ferry (WLF) equation 4 for T > Tg. However, an 
Arrhenius type of temperature dependence is observed in 
the glassy state s-9. This phenomenon is generally true for 
amorphous as well as crosslinked systems. By extending 
the molecular relaxation theory for amorphous 
polymers 1°-12, we will (1) calculate the dynamic 
mechanical properties of crosslinked polymers, (2) predict 
the transition of a WLF dependence to an Arrhenius 
temperature dependence of the shift factor (relaxation 
timescale), and (3) show the difference in physical ageing 
between crosslinked and amorphous polymers. The 
theoretical calculation will be compared with published 
experimental data. 

COMPLEX M O D U L U S  

The constitutive relation of the tensile stress a and strain e 
for a viscoelastic material can be written by means of the 
Boltzmann superposition integral" 

a(t) = i E(t-q)k(q) d~/ (1) 

- - o 0  

where E is the tensile relaxation modulus and t is time. 
Put: 

ot  = (cor)(t/z) - zy (2) 

where co is the angular frequency, r is the global 
(macroscopic) relaxation time, and z and y are the non- 
dimensional frequency and time, respectively. When 
equation (1) is subjected to the Fourier transform: 

tr(z) = f a(y) exp( - i zy )  dy 
--C~3 

it can be written in the form: 

(3) 

oO 

a(z)/e(z) = E*(z) = iz f E(y) exp( - izy) dy 

0 

(4) 
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where the complex tensile modulus can be separated into 
the real and imaginary parts: 

E*(z) = E'(z) + iE"(z) (5) 

The real part is called the storage modulus and the 
imaginary part defines the energy dissipation and is called 
the loss modulus. We consider that the tensile modulus is 
related to the normalized relaxation function ~b by the 
equation: 

E(y) - Eoo _ ~b(y) = exp( -  yP) 0 </3 ~< 1 (6) 
E o -  Eoo 

where E o and E~ are unrelaxed and relaxed moduli, 
respectively. Equation (6) has been used quite successfully 
in describing the transient viscoelastic behaviour of 
amorphous and lightly crosslinked polymers 12-15. In this 
paper, we shall see whether it is also applicable to the 
dynamic viscoelastic properties of well crosslinked 
polymers. There are two important differences between 
the Williams--Watts equation for dielectric relaxation 16 
and equation (6). First, they chose -q~' instead of q~ to 
define the transient decay. Secondly, while they treated/3 
and T as empirical parameters, which must alter 
continuously through the glass transition region in order 
to fit the relaxation data, we acquire a deep insight into 
the molecular mechanism controlling these parameters. 
We have found that fl is a constant through the glass 
transition region and z can be a function of temperature, 
non-equilibrium glassy state 11, crosslink density ~* and 
non-linear stresses ~2. Further details will be discussed 
and examined in the next section. 

Substitution of equation (6) into equation (4)gives: 

o0 

E ' -  Eo~ = 7 f  exp(-x)[x('-')msin(ogvxlm)] dx (7) 
E o - E ~  

0 

and 
gO 

Ett (l)~f exp(_x)[x(l_fl)/flcos(o,~.~xl/fl) ] dx ( 8 )  

E o - E ~  
0 

These two integrals can be evaluated numerically by the 
Gauss-Laguerre quadrature for small coz. For large o~z, 
the convergence of the numerical integrations becomes so 
slow that an alternative approach has to be developed. 

Replacing iz=p in equation (4), we consider the 
Laplace transformation of the relaxation function: 

q~(p) = f exp(--py)c~(y) dy 
0 

(9) 

According to the mathematical theorem 17: 

lim pc#(p) = lira ~b(y) (10) 
p~oo y--*0 

we take the series expansion of equation (6): 

~(y) = exp( -- ya) = 1 - y~ -I 
y2# y3# 

2! 3! 
F.. .  (11) 

Substitution of equation (11) into equation (9) gives: 

p~b(p) - 1 = ~ ( -  1)mF(m/3+ 1)/m!p mp 
" = 1  

(12) 

where F is the gamma function. Thus, for large co~, the 
storage and loss moduli can be efficiently calculated, 
respectively, from: 

and 

E'- E~ 1 + ~ ( -  1)'r(m/~ + 
Eo-Eoo .,=1 m!z~ ~ 1) cos(m/3n/2) (13) 

Eft ( -  1)" + 1F(mfl + 
"L= 1 m!~tJ 1)sin(m/3n/2 ) 

Eo Eoo 1 

(14) 

The leading terms of the above two equations give a useful 
asymptotic expression for the loss tangent in the glassy 
state where Ego is also negligible in comparison with Eo. 
That is: 

lim tan A = (COT)-PF(1 +/3)[sin(fin/2) +cos(/3rr/2)] (15) 
tOT --~ oo 

When fl= 1, equation (15) becomes: 

lira tan A= (~oz) -1 (16) 
6O¢ ~ O0 

which has the familiar f o r m  2'3. 
The dependence of E' and E" on coz can be calculated 

from equations (7), (8), (13) and (14) and is shown in 
Figure 1 where fl is the only adjustable parameter to be 
determined from experimental data. In analysing the 
equation of state and physical ageing data on the basis of 
our molecular model for relaxation in the glass, we have 
found that fl--1/2 for most amorphous polymers TM. 
The calculated curves in Figure 1 provide a good 
description to the normalized storage and loss moduli 
measured (ref. 1, Ch. 15) over a wide range of 
temperatures for amorphous systems. 

I I I I 

I.O 

0.8 

0.6 

0.4 

E u 

0 I I 
-2 -I 0 I 2 5 

Log ( o,)'I: ) 

Figure 1 Typical calculation for normalized components of the 
complex moduli of an amorphous polymer (//=0.5) 
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Figure 2 Comparison of the calculated (curves) and measured 
(points) 5'Is master curves of dynamic properties of an epoxy resin 
( f l = 0 . 1 9 )  

A comparison between the theory and experiment for 
epoxy resins 5'~ 8 is carried out in Figure 2. The dynamic 
viscoelastic data cover a four-decade frequency range 
from 0.01 to 100 Hz and temperatures from 25 to 200°C. 
The experimental points in Figure 2 have been shifted 
horizontally to form the 'master curves'. The shift factor, 
aT, will be discussed in the next section. The reference 
temperature for the master curves is 165°C. The full 
curves represent the theoretical calculation where 
(Eo,E~) = (2 x 105,1.8 x 103)(296/T) psi. It is interesting 
to note that the temperature dependence of the relaxed 
and unrelaxed moduli of crosslinked polymers has exactly 
the same form as that of amorphous polymers 13. Using 
equations (7), (8), (13) and (14), we have determined 
fl=0.19, which defines the shape of the curves and the 
range of timescale for the master storage modulus and 
loss tangent. Since the abscissa in Figure 2 is expressed in 
terms of coa T rather than the dimensionless ~oz, this also 
enables us to determine z(165°C) = 10- 3.a s. Figures 1 and 
2 reveal that the timescale for well cured epoxy resins 
covers the range far broader than that for amorphous 
polymers. 

SHIFT FACTOR 

The time-temperature superposition has been extensively 
studied in the literature to understand the kinetics of 
polymer relaxation. It has been well established that the 
linear viscoelastic response obeys the WLF 4 (or 
Doolittle 19) shift function at temperatures above the glass 
transition temperature (Tg). However, an Arrhenius type 
of temperature dependence of the relaxation time is 
usually observed in the glassy region. The phenomenon is 
generally true for amorphous polymers as well as 
crosslinked systems. Using our statistical mechanical 
theory of relaxation in the glass, we shall make a 
theoretical prediction and molecular interpretation of the 
change from a WLF dependence to an Arrhenius 
temperature dependence of the shift factor through the 
glass transition region. 

On the basis of the idea of continuous conversion of the 
number of holes (free volume) and the number of phonons 
in a polymer lattice, we have introduced 1° a physical 
picture of quantized hole energy states e~ with 

j = I , 2 , . . . , L .  The problem is to determine the 
distribution of the ensemble characterized by a set of hole 
numbers {ni} with ~ .  n~= n. The ratio of n~/N=fj is the 
j th contribution to the free volume fraction ( f =  ~jf j ) .  
Minimizing the excess Gibbs free energy due to hole 
introduction with respect to ni, the equilibrium 
distribution of the free volume fraction is obtained1°: 

f (T)  =f ,  expl - R ( 1 - ~ , ) I  (17) 

where ~ = ~ .  eif j / f  is the mean hole energy, R is the gas 
constant and the subscript r refers to the condition at 
T = Tr which is a fixed quantity near Tg. 

The non-equilibrium glassy state, 6 ( t ) = f ( t ) - ~  is 
determined by solving the kinetic equations that describe 
the local motion of holes in response to molecular 
fluctuations during vitrification and physical ageing. In 
the case of isothermal annealing followed by quenching 
from an elevated liquid temperature T o to T below Tr, the 
solution is ~ 1 : 

6(T,t) = [f(To) - f ( T ) ]  c~(t/~) (18) 

with the normalized relaxation function: 

L 

c~(t/zea) = ~ gj exp( - t/Zjr). ) (19) 
j = l  

where a and 2 are the global and local shift factors, 
respectively, and gj is the distribution function of hole 
energies and is related to ~b by the discrete Laplace 
transform. By letting: 

~:j - -  27jr)~ 1 *- and gj~g(s) (20) 
z zea s 

the summation in equation (19) can be written as an 
integral: 

cx~ 

q~(t/z)= f g(s) exp(-st /z)  ds 

0 

(21) 

When the distribution is a delta function, g(s) = 6(s - 1), 
the distinction between the local and global shift factor 
disappears and equation (21) reduces to the exponential 
form, exp( - t/r). 

According to equation (18), free volume is frozen-in 
when the system is quenched from To to T. For t > 0, the 
frozen-in structure starts to relax, and the relaxation 
function th has been treated as the probability of the holes 
having not reached their equilibrium states and has the 
fractional exponential form of equation (6). In this case, 
equations (20) and (21) reveal the local and global 
relaxation times cannot be the same because g(s) has a 
broader distribution and is not limited to a value at s = i. 
We have found 1 o-, 2 that the exponent fl in equation (6) 
not only uniquely defines the shape of the hole energy 
spectrum g(s), the Laplace inversion of tk, but also 
provides an important link between 2 and a. That is 1°'11 : 

In a = (In 2)//3- ~r(zr - -  T )  - -  

f l f  r2 (22) 
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obtain the activation energy: 

Figure 3 The transition of a WLF dependence to an Arrhenius 
temperature dependence for the global shift factor of an epoxy. The full 
curve represents the theoretical calculation and points are experimental 
data s (~ = 4.5 kcal tool - i, fr = 0.13) 

where &r=gYr/RTr 2. The first term &r(Tr-T)/fr 2 in the 
above equation is controlled by the local activation 
energy ~/J~ and the second term fir2 is related to the non- 
equilibrium fluctuation in glasses. In the vicinity of Tg, 
equation (22) is equivalent to t l: 

lna(T'fi)=~(f lfi ~r) (23) 

which suggests that Doolittle's equation has to be 
modified to include the non-equilibrium contribution in 
the glassy state. When 3 = 0, equation (23) can be written 
in the form of the WLF equation, which is known to be 
valid for T >  Tg. 

When the experimental ar vs. T data on the epoxy resin 
above Tg= 115°C are used, equations (17) and (23) give 

= 4.5 kcal tool- ~ and f,  = 0.13. In analysing the data, we 
consider: 

log ar = 8.58 +log a (24) 

with a (115°C)= 1. Similar to the approach for lightly 
crosslinked polymers 1¢, the reference temperature Tr has 
been chosen to be Tg of an epoxy resin. By using the same 
set of values for ~,frr and/Y that were determined in the last 
section and having Zr = 1 h, equation (22) predicts the 
temperature dependence of the shift factor in the glassy 
and transition states. The non-equilibrium glassy state in 
equation (22) is calculated from a 2: 

T 

6(T'q)=-Rf rexp[ -(T-T''~#I, [qlr /I ] d T '  

To 

(25) 

where q is the cooling (<  0) rate. The numerical solution 
of the above equation is not affected by the initial 
temperature of To > Tg + 10°C. 

In Figure 3, the full curve represents the theoretical 
calculation and the experimental points correspond to 
those in Figure 2. We have shown t2 that the cooling rate 
has little effect on the calculated slope ~loga/dT in the 
glassy state (T < Tg- 10°C). Following equation (22), we 

where 

AH -~ - R T ,  2 O In a(T,f)/OT = (1 -#)g/flf, (26) 

1 O,S(T,,~) 
# = (27) 

~r dT 

It reaches a constant value of 0.54 for T < T~- 10°C and 
approaches zero for T > T v The activation energy near T~ 
changes from g//~f~= 182.2 to 84 kcal mol-1 = (1 -p)~//?~ 
in Figure 3 as the epoxy resin is cooled through the glass 
transition region. Similar to that of amorphous polymers, 
this transition phenomenon can be interpreted in terms of 
p for crosslinked polymers. In the glassy state, the value of 
AH obtained in Figure 3 is larger than those reported for 
amorphous polymers 12't s, which are in the range of 30-- 
50 kcal tool- t. 

Struik 2° has introduced the same constant # in the 
glassy state to characterize the physical ageing rate 
observed in his isothermal creep experiments. Recently, 
we have derived a 2 the Struik equation for the shift factor 
at longer ageing times (to) from equations (18) and (22): 

a(T, te) ~ t~ (28) 

The exponent p is no longer an empirical constant but can 
be calculated directly from the same molecular 
parameters (~, ~,  /~ and zr) mentioned earlier. All 
molecular parameters are independent of temperature 
and frequency (or time) and can be determined separately. 
The value of # for epoxy resins is lower than that of 
amorphous polymers 12,2o,21 in the glassy state. 

From equations (15) and (28), we have: 

tan A ,-~ (coz) -a ,-, t J "  (29) 

which reveals that the effect of physical ageing on 
crosslinked systems is much smaller in the dynamic than 
in the transient measurements. The value of/~# drops 
from 0.4 for amorphous polymers to 0.1 for epoxy resins. 

Comparing with amorphous polymers, we have seen 
that epoxy resins have smaller/~ and larger frr and AH. The 
formation ofcrosslinks slows down the molecular motion 
of chain molecules and the global relaxation time has to 
increase 14. This can be interpreted as the result of 
stronger cooperative interaction due to broader hole 
energy spectrum, smaller /Y in equation (22), for 
crosslinked systems. The slowdown process contributes 
to more free volume frozen-in near the glass transition, 
which is consistent with the reported anomalous results 22 
for epoxy resins. 

CONCLUSIONS 

The dynamic moduli, loss tangent and the frequency and 
temperature shift factor of epoxy resins have been 
quantitatively calculated through the glass transition 
regions on the basis of our quantized hole energy model. 
The timescale for the theoretical evaluation of 
experimental data covers the frequency range from 0.01 to 
100Hz and temperatures from 25 to 200°C. The 
corresponding timescale for the master curves covers 
more than a ten-decade time or frequency range. We have 
shown how the slow convergence problem encountered in 
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the calculation can be solved and how the molecular  
parameters  are determined separately. The master  curves 
of  the dynamic  properties of  an epoxy resin are uniquely 
determined by fl, which characterizes the shape of  the hole 
energy spectrum. The mean hole energy ~ and the 
reference free volume fraction f~ are obtained by fitting the 
log aT versus  T data  above Tg. Using these predetermined 
molecular  parameters ,  we predict the temperature 
dependence of shift factor in the glassy and transit ion 
states. The transit ion of  a W L F  dependence to an 
Arrhenius temperature  dependence of  the relaxation 
timescale in the vicinity of  Tg is related to the physical 
ageing rate/~,  which can be calculated from the non-  
equilibrium glassy state in terms of the same set of  
molecular  parameters.  The dynamic  response of 
crosslinked polymers  is quite similar to that of 
a m o r p h o u s  polymers.  However ,  the hole energy 
spectrum is found to be much broader.  As a result, we 
have found higher activation energy, more  frozen-in free 
volume, and smaller effect of  physical ageing on the 
dynamic  viscoelastic properties of  crosslinked systems. 
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